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ABSTRACT

In this paper, a new method for spatial resolution enhance-
ment of hyperspectral images (HSI), based on the non-
subsampled shearlet transform (NSST) is introduced. The
proposed method integrates a high spectral resolution HSI
with a high spatial resolution multispectral image (MSI) of
the same scene. First, the HSI is spatially upsampled by
means of a bicubic interpolation. Second, a 2D NSST is
applied to each spectral band of the upsampled HSI and the
MSI respectively. Third, the spectral coverage regions of HSI
and MSI are matched and the detail shearlet coefficients of
the HSI bands are replaced by detail shearlet information of
the MSI, based on the spectral matching of both sensors. The
proposed method is applied to real datasets and compared
with some state-of-the-art fusion algorithms. The obtained
results show that the proposed method significantly increases
the spatial resolution while preserving the spectral content of
the HSI.

Index Terms— Hyperspectral Images, Multispectral Im-
ages, Shearlet Transform, Fusion

1. INTRODUCTION

The main advantage of HSI in comparison with MSI is the
higher spectral resolution that they provide, which is very im-
portant in many practical applications such as spectral unmix-
ing, classification and target detection [1]. Nevertheless, the
spatial resolution of HSI is limited and spatial resolution en-
hancement can significantly improve the results of these ap-
plications. In many cases, both HSI and MSI are available
from the same scene. Different algorithms have been intro-
duced in the last decade to perform a fusion of the low spatial
resolution HSI (LRHSI) with a MSI in order to obtain a high
spatial resolution HSI (HRHSI). These fusion methods can
be generally divided into two main groups: methods based on
spectral unmixing and methods based on sparse representa-
tions [2].

In fusion methods based on spectral unmixing (SU), the
images are decomposed into endmembers and abundance
fraction matrices. As an example, in [3], HSI and MSI were

alternatively unmixed by coupled nonnegative matrix factor-
ization (CNMF). Another method based on spectral unmixing
was introduced in [4]. In this approach, the endmember ma-
trix was first extracted from the LRHSI and the abundance
fraction maps were estimated by formulating the problem as
a convex subspace-based regularization problem.

In fusion methods based on sparse representations (SR),
first a proper dictionary from available images is constructed.
After that, a sparse code for the HRHSI is calculated from the
smallest number of dictionary atoms [2,5]. In [5], a Bayesian
sparse (BS) method was introduced. In this method, first prin-
cipal component analysis was applied to the LRHSI. Then,
using the MSI and HSI, a dictionary was created. At the end,
an alternative optimization technique solved the fusion prob-
lem.

Recently, we introduced two fusion methods, based on
the combination of spectral unmixing and sparse coding (see
[1, 2] for more details). These methods show better perfor-
mance than the sparse coding [5] and spectral unmixing [3,4]
methods. In this paper, we propose a SR based method. Re-
cently, it has been shown that the shearlet transform creates
an efficient sparse representation, and it has been successfully
used in many practical applications such as denoising, classi-
fication etc. [6]. In the proposed method, first the LRHSI is
upsampled to the spatial resolution of the MSI using an in-
terpolator. Then, the spectral coverage regions of the bands
of the LRHSI and MSI are matched such that each band of
the LRHSI is covered by a specific band of the MSI. Further,
the NSST is applied to each band of the upsampled LRHSI
(UHSI) and MSI separately. Then, the detail shearlet coeffi-
cients of each band of the UHSI are replaced by the detail
shearlet coefficients of the matching band of the MSI. Fi-
nally, the inverse NSST is applied to the fused data and the
HRHSI is constructed. The proposed method is applied to
real datasets and compared with well-known fusion methods.

2. PROPOSED METHOD

We will first fix some notations used throughout the paper. In
this paper, tensors are denoted by capitalized and calligraphic
letters: X . Matrices are denoted by capitalized boldface let-
ters: X. Vectors are denoted by boldface lower-case letters: x.
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Scalars are presented by lower-case letters: x. The notation
[.]T is used for a vector or matrix transpose.

2.1. Observation Model

In general, HSI and MSI have three dimensions, two spatial
and one spectral. We define Z ∈ RI1×I2×I3 as the ground
truth HRHSI. XL ∈ RIh1×Ih2×I3 denotes the LRHSI and
Y ∈ RI1×I2×Im denotes the MSI from the same scene. First,
these images are converted to two dimensions: Z ∈ Rnm×I3

(nm = I1 × I2 is the total number of MSI pixels), XL ∈
RnH×I3 (nH = Ih1 × Ih2 is the total number of LRHSI pix-
els), Y ∈ Rnm×Im . The relationship between these images
can be expressed as:

XTL = ZTBM + NH ,ZT ∈ RI3×nm ,B ∈ Rnm×nm ,

M ∈ Rnm×nH ,XT ∈ RI3×nH ,NH ∈ RI3×nH
(1)

YT = RZT + NM ,ZT ∈ RI3×nm ,R ∈ RIm×I3 ,
YT ∈ RIm×nm ,NM ∈ RIm×nm

(2)

Im � I3, nH � nm

where B is a spatial blurring matrix. Matrix M denotes a
uniform downsampling. The rows of matrix R denote the
spectral responses of the multispectral sensor. In this paper,
the matrices B and R are estimated from the observed im-
ages (see [1] for more details). NH and NM are Gaussian
noises of the LRHSI and MSI with zero mean and covari-
ance matrices ΛH = diag(δ2H,1, ..., δ

2
H,I3

) ∈ RI3×I3 and
ΛM = diag(δ2M,1, ..., δ

2
M,Im

) ∈ RIm×Im respectively. The
LRHSIXL is spatially upsampled toXU using a bicubic inter-
polation, such that the spatial size of the UHSI (XU ) becomes
equal to the spatial size of the MSI. After that, a 2D NSST is
applied to each band of the UHSI and MSI respectively. The
NSST will be briefly explained in the following subsection.

2.2. NSST

The NSST includes two main types of non-subsampled filters:
pyramid and shearing filters. Pyramid filters decompose the
image into detail and approximate images of the same size
as the original image. Shearing filters decompose the detail
images into directional subbands. These filters are iteratively
applied (see [6] for more details). In this paper, the 2D NSST
is applied to the UHSI and MSI as follows:

[XUANSST
(:, :, i),XUDNSST

(:, :, i)] =

NSST (XU (:, :, i)), i = 1, 2, ..., I3
(3)

[YANSST (:, :, j),YDNSST (:, :, j)] =
NSST (Y(:, :, j)), j = 1, 2, ..., Im

(4)

where XUANSST
,XUDNSST

denote the approximate and de-
tail images of the UHSI and YANSST ,YDNSST denote the
approximate and detail subbands of the MSI. XUANSST

are
preserved and the MSI detail subbands (YDNSST ) are fused
with the UHSI detail subbands. In this work, the UHSI sub-
bands are replaced by the MSI subbands.

The spectral range covered by the HSI is divided into Im
regions in accordance with the regions covered by the MSI,
such that each region Pj contains a contiguous group of hy-
perspectral bands that is associated with one particular multi-
spectral band j. To construct the HRHSI (XH), the fusion is
independently performed for each group as follows:

XHANSST (:, :, i) = XUANSST (:, :, i),
i = 1, 2, ..., I3

XHDNSST (:, :, k) = YDNSST (:, :, j),
j = 1, 2, ..., Im

k ∈ Pj

(5)

Finally, the inverse of the NSST is applied:

XH = NSST−1(XHNSST ) (6)

The pseudo code of the proposed method, based on spec-
tral matching and NSST (SM-NSST) is given by Algorithm
1.

Algorithm 1 PROPOSED ALGORITHM (SM-NSST)

Input: Z , B, M, R, ΛM , ΛH , Shearlet Parameters
1- Construct XL, Y .
2- Spatially upsample XL and create XU .
3- Apply 2D NSST to each band of XU ,Y .
4- Replace the detail subbands of XU by the detail sub-
bands of Y , based on the corresponding spectral coverage
regions.
5- Apply inverse 2D NSST to the fused data.
Output: XH

3. EXPERIMENTAL RESULTS

3.1. Quality Indices

In order to evaluate the quality of the obtained HRHSI, four
image quality measures peak signal-to-noise ratio (PSNR),
spectral angle mapper (SAM), error relative global-dimensional
synthesis index (ERGAS) and cross correlation (CC) based
on the comparison with the high-resolution ground truth HSI
are calculated (please see [1] for more details).

3.2. Real datasets

The proposed method has been applied to two real datasets:
Pavia and Paris.
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Pavia dataset, acquired by the reflective optics system imag-
ing spectrometer (ROSIS) optical sensor over the urban area
of the university of Pavia, Italy 1. This dataset is of size
610 × 340 and has 115 bands. In this paper, a subset of
the Pavia dataset with a size of 200 × 200 × 115 voxels is
used. The water absorption bands are removed and 93 bands
are retained. This dataset is considered as the ground truth
image, and has high spectral and spatial resolution. In order
to construct a LRHSI, Gaussian blurring B (with size 7 × 7
and σ = 1.5) is applied to the ground truth image and the
blurred image is downsampled by a factor of two, such that
the LRHSI has size 100× 100× 93. For this dataset, no MSI
is available. Therefore, a MSI of four bands is created by
filtering the ground truth HSI using the IKONOS reflectance
spectral response.
Paris dataset, taken above the city of Paris and acquired by
two sensors: Hyperion 2 and ALI 3. Hyperion generates a
HSI with a spatial resolution of 30m. The ALI sensor pro-
vides MSI and PAN images of the same scene at resolutions
of 30m and 10m, respectively. A spectral matching table be-
tween Hyperion and ALI exists 4. A LRHSI is constructed in
the same way as described for the first dataset. HSI and MSI
are selected with size (36 × 36 × 128), after removing noisy
bands, and (72× 72× 9) respectively.

3.3. Parameter Setting

In both datasets, zero-mean additive Gaussian noises are
added to both MSI and HSI (see Eqs.1 & 2). In most of
the fusion methods from the literature, Gaussian noise with
constant variance along the HSI bands is accommodated.
However, for most HSI sensors, the noise power varies be-
tween bands. Therefore, we randomly selected HSI bands and
add low and high noise powers to them. In the Pavia dataset,
a SNR of 30 dB for 74 bands and 10 dB for the remaining
bands (the bands are randomly selected) and 35 dB for all
bands of the MSI is generated. In the Paris dataset, a SNR
of 30 dB for 103 bands and 10 dB for the remaining bands
of the HSI and 35 dB for all bands of the MSI is generated.
The LRHSI is spatially upsampled by bicubic interpolation.
In the proposed method, a four level NSST decomposition
is used and the number of shearing directions is chosen to
be [32, 32, 16, 16]. The proposed method is compared with
four state of the art fusion methods; two spectral unmixing
based methods CNMF [3] and HySure [4], and two methods
that combine spectral unmixing and sparse representations:
SUSC [1] and SUBS [2] . In CNMF, the maximum number
of iterations in the inner and outer loops are selected as 10
and 300 respectively. In SUSC, the patch size is 8 × 8, the
number of atoms is 332 and λ = 1. In SUBS, the patch size

1 http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes

2 http://eo1.gsfc.nasa.gov/
3http://eo1.usgs.gov/sensors/ali
4http://eo1.usgs.gov/sensors/hyperioncoverage

Table 1: Fusion Results of Paris

Method PSNRdB SAM CC ERGAS Time(s)
CNMF [3] 25.97 4.72 0.825 6.899 1.60
SUSC [1] 22.90 8.01 0.966 18.591 78.69
SUBS [2] 24.97 3.99 0.794 7.207 11.44

HySure [4] 27.56 10.87 0.832 9.577 4
SM-NSST 27.57 3.82 0.837 6.849 54.66

Table 2: Fusion Results of Pavia

Method PSNRdB SAM CC ERGAS Time(s)
CNMF [3] 36.66 4.49 0.984 5.67 5.82
SUSC [1] 33.54 5.55 0.958 9.021 517.41
SUBS [2] 38.24 4.16 0.985 5.532 32.93

HySure [4] 38.35 18.38 0.953 11.372 27.62
SM-NSST 38.44 4.42 0.985 4.629 109.90

is 6 × 6, the number of atoms is 256 and λ is 25. Finally, in
HySure, λm = 1, µ = 5 × 10−2 and λφ = 5 × 10−4. All
the algorithms have been implemented in MATLAB (Version
2017a) on a computer with intel R© Core i7 (3.6GHz), 64GB
RAM and a 64-bit operating system.

3.4. Fusion Results

Quality measures and computing time for the proposed algo-
rithm and the other fusion methods are reported in Tables 1
& 2 for the two datasets respectively. The fusion results of
Paris dataset obtained from the different algorithms are de-
picted in Fig. 1.The obtained results show that SUSC and
HySure generate high SAM and ERGAS values compared
to the other methods, because in these methods, only Gaus-
sian noise with constant power is accomodated. HySure and
the proposed method both generate a high PSNR value. SM-
NSST obtains the highest PSNR and the lowest ERGAS, and
competitive SAM and CC. As a possible reason, we believe
that the shearlet transform significantly decreases the effect of
noise which improves the fusion performance. The required
computing time of the proposed method is competitive with
the other methods that use sparse representations (SUSC and
SUBS). Figures 2 & 3 show the spectra of a road pixel (18,38)
and a vegetation pixel (166,164) in the ground truth and re-
constructed images for Paris and Pavia respectively. As can
be seen, the spectral distortion is the lowest for the proposed
method. We can conclude that the proposed method generates
reconstructed HRHSI of higher spatial resolution with lower
spectral distortion compared to the other methods.

4. CONCLUSIONS

In this paper, a new method is proposed for enhancing the spa-
tial resolution of HSI, based on fusion with a MSI of the same
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(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 1: (a) Band 110 of the Paris ground truth image size 72 × 72. (b) LRHSI size 36 × 36. (c) Band 3 of the MSI size 72 × 72. Spatial
resolution enhancement results of band 110 of the HSI: (d) CNMF [3]. (e) SUSC [1]. (f) SUBS [2]. (g) HySure [4]. (h) SM-NSST.
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Fig. 2: Spectra of road in Paris dataset
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Fig. 3: Spectra of vegetation in Pavia dataset

scene. In the proposed method, the spectral coverage regions
of HSI and MSI are defined and the spatial detail shearlet co-
efficients of the HSI are replaced by the spatial detail shearlet
coefficients of the MSI. The shearlet transform creates an ef-
ficient sparse representation, taking account of the noise, and
the spectral matching between the two sensors significantly
reduces the spectral distortion during fusion. In the future, we
will consider other type of noise (such as Poisson and Spike
noise) in the observation model.
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